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Abstract-The cooling tower analyzed in this study is void of fill. It is vertical with the air stream moving 
uniformly upwards and the water stream, dispersed into droplets, moving uniformly down. The droplets 
are introduced at the top of the tower with zero velocity, uniform temperature and a known size 
distribution. The analysis takes into account the fact that at any given height all droplets are not at 
the same temperature. Results are presented in the form of a correction factor on a simplified solution 
which neglects this fact. The effect on the correction factor of all pertinent dimensionless groups is examined. 

NOMENCLATURE 

surface area of droplets contained in unit 
volume of tower [m-r]; 

slope of saturation line (equation (11)) 

[J/kg Kl ; 
specific heat at constant pressure 

[J/kgK] (CL, of water, Cc of gas); 
drag coefficient on droplet 
[dimensionless]; 
correction factor defined by equation (39) 
[dimensionless] ; 
fn(x, z) ax is the fraction of the total 
number of droplets at height z which 
have diameter between x and x + dx 

Cm-‘]; 
fnO(x) ax is the fraction of the total 
number of droplets introduced at top of 
tower which have diameter between x and 

x+8x Cm-‘l;&(x) =.6(x,0); 
&(x) dx is the fraction of the total 
volume of droplets introduced at the top 
of the tower in a given time interval, 
having diameter between x and x + ax 

is 

*r 
[m-lip .h = x3X&) x3f.o(4 dx; o 

F:(t)d< is the fraction of the total 
volume of droplets introduced at top of 
tower having dimensionless diameter 
between e and 5 + d& dimensionless; 
acceleration of gravity [m/s?]; 
specific enthalpy of air at height z [J/kg], 

H,, = H,,(o); 
specific enthalpy of air at equilibrium 
with water at temperature t [J/kg], 

H,, = HAr,); 

f&k 4, 

h,(x, 4, 

k, 
L, 

specific enthalpy of air at equilibrium 
with water droplets at height z and of 
diameter x [J/kg]; 

convective heat-transfer coefficient from 
air to droplet of diameter x and at height z 

[W/m2 Kl ; 
thermal conductivity of air [W/m K] ; 
a characteristic length, equal to 

[ 1 fg 1’3 Cm]; 

mass flow rate [kg/s]. 

(q, of water; mG, of air); 
total number of droplets per unit volume 
at height z [m- ‘1; 
number of transfer units of tower of 
height Z, dimensionless; 

NTU,(Z) = NTU corresponding to 
simple solution-equation (34); 

Nu (Re, We), Nusselt number corresponding 

fiu (5, HI, 

pr, 
4, 

R, 

to convective heat transfer over droplet, 
at Reynolds number Re and Weber 
number We [dimensionless]: 

h,x Z_’ 
k ’ 

average Nusselt number of droplet of 
dimensionless diameter 5; for a tower of 

dimensionless height H [dimensionless], 
equation (31); 
Prandtl number (v/a) [dimensionless]; 
local total heat transfer from droplets to 
air per unit volume of tower [W/m”]; 

~LCL 
mcb [dimensionless] ; 
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Re. Reynolds number, 

i ! = :F [dimensionless] : 

T(x, Z), residence time of droplet of diameter x in 
tower of height Z [s]; 

Qx. z), temperature of droplet of diameter x and 

at height z [K] ; 
t 
&(::a vl)> 

feed temperature of water to tower [K]; 

Reynolds number of droplet of 
dimensionless diameter < and at 

dimensionless height q [dimensionless], 
U(<, q) = v,si’v; 

ah average Reynolds number defined by 
equation (30) [dimensionless]; 

V(x, z), absolute velocity of droplet of diameter x 
and at height z [m/s]; 

K, K(x), terminal absolute velocity of droplet of 
diameter x [m/s]; 

p, P(x, Z), average absolute velocity of droplet of 
diameter x in tower of height z [m/s] 

(= Z/T); 
V,, V,(x, z), relative velocity between droplet and 

air stream [m/s]; (V, = V+ V,); 
V,,, V,,(x), terminal relative velocity between 

droplet and air stream [m/s]; 
ii,, c(.x, Z), average relative velocity of droplet in 

tower of height Z [m/s]; 

V (I> velocity of air rising up tower [m/s]; 

We, 

droplet equivalent spherical diameter [m], 

volume of drop ; 

x31, volume-diameter mean diameter of 
droplets [m] : 

1 

s 

-5, f 
-= 
x:1 

i.f,,.(~) dx; 
” x 

.&, upper limit diameter of droplet size 
distribution [m]; 

Z, height of tower [m]; 

Z, distance down from top of tower [m]. 

Greek letters 

The present paper presents an analysis of a counter- 
flow spray cooling tower. This study was prompted by 
the need to design towers for applications in which, 
due to salt deposition on the packing and subsequent 
air-flow blockage, the use of a tower packing is not 
practical. It is felt that the study may also serve to 
point out ways of gaining a better understanding and 
perhaps subsequent improvement of more conven- 
tional packed towers. The genera1 approach of this 
study should also be applicable to spray ponds and 
canals. 

thermal diffusivity of air [m’/s]; Studies of spray cooling towers have been reported 
6 b/PrCL [dimensionless] ; sporadically over the years: Niederman et ul. [I]. 
characteristic of spray droplet size Lowe and Christie [2], and Dutkiewics [3] have 
distribution defined by equation (17) described experimental investigations while Nottage 
[dimensionless]; and Boelter [4] have reported an analytical approach, 
characteristic of droplet size spray based on (among other things) droplets of uniform size. 
distribution defined by equation (17) The experimental studies show the volumetric coeffi- 
[dimensionless]; cient and HTCJ to depend upon factors, of which, for 

H. 
Zpc 
Lz; [dimensionless] : 

‘?- 

0, 

r: [dimensionless] : 

(H,, - H,)/(H,,, - H,,) [dimensionless]; 

k’, fz$ [dimensionless] ; 

V. kinematic viscosity of air [m2/s]; 

r, 5,, <31, i’,, < = siL [dimensionless], 

<, = x,/L; c-j1 = 
c, 

l(31..L, g, = mL-- ; 
l+y 

density [kg/m3]; pG, of air; pL, of water; 
surface tension of water [N/m]; 

T. @ .J [dimensionless]; 
PL L2 

y [dimensionless]; 

c: - VT v,,-v, --=--, 
iJ,+vg v,,+v, 

INTRODUCTION 

THE COOLING tower remains the engineer’s chief device 
for dissipating large quantities of heat to the environ- 
ment. Despite its popularity, the basic theory of this 
equipment remains essentially unchanged from that 
first developed by Merkel in 1925. As opposed to other 
types of heat-transfer equipment, such as heat ex- 
changers, the relevant coefficients are developed purely 

by empirical methods and have not been examined 
analytically. Moreover. some of Merkel’s basic assump- 

tions are yet to be examined in depth. 



A counterflow spray cooling tower 1229 

packed towers, they are traditionally assumed to be 
independent. The most important of these factors is 

the tower height, the volumetric coefficient having 
been found to decrease dramatically as the tower height 
is increased. This is particularly to be noted in the 
studies of Lowe and Christie. In some cases this effect 
may be explained as due to a greater concentration of 
droplets near the top of the tower, associated with a 

lower droplet velocity near the top, but this cannot 
explain all of the results. An explanation suggested by 

Lowe and Christie is agglomeration of the water 
droplets; however the very large void fractions which 
exists in the towers appears to argue against this. An 

alternate explanation is associated with the fact that 

the droplets produced by a spray are not of uniform 
size. A feature of the present analysis is that it does 
not assume all droplets to be of the same diameter but 
rather that they have some (known) size distribution. 

tion that the void fraction (i.e. local volume fraction 

occupied by gas) of the tower is essentially unity 

throughout. As a consequence the air velocity (ignoring 

density changes of the air in passing through the tower) 
is assumed to be constant throughout the tower and 

virtually unaffected by the presence of the drops; as a 
second consequence, the probability of collision or 
agglomeration of drops is assumed negligible. The 
relative velocity between air and drop is assumed to 
be everywhere below that to cause shattering and since 

neither shattering nor collision nor agglomeration 

occur, each droplet is assumed to maintain its identity 
as it passes through the tower. In addition, the alter- 
ation of the diameter of each droplet, due to evap- 

oration, is assumed negligible, and therefore each drop 
is assumed to maintain its diameter over the full height 
of the tower. The number of droplets having a given 
diameter entering a control volume is therefore taken 

(a) (b) 

FIG. 1. (a) Mode1 of tower analyzed; (b) Possible tower treated by model. 

The spray tower model analyzed in the present study 
is sketched in Fig. l(a): droplets fall vertically down- 
ward from the top of the tower where they are uniformly 
distributed, with some known droplet-size distribution 
and with zero initial velocity; at the same time an air 
stream rises, uniformly and vertically and in direct 
counterllow to the droplets. This model may be applied 
to the type of tower, sketched in Fig. l(b), where the 
water is introduced near the top with a set of spray 

nozzles; it may also have use in modeling the void 
region between successive slats in a wood packed 
cooling tower. 

ASSUMPTIONS 

The assumptions of the present model, in addition 
to those mentioned above are given in the analysis. 
However, some of the most important ones are dis- 
cussed in what follows. The first of these is the assump- 

equal to the number of that diameter leaving. Each 
droplet is assumed to be uniform in temperature 
throughout (although all droplets at a given height 
are not assumed to be at the same temperature) so 
that the main resistance to energy transfer is assumed 
to lie on the air side of the air-water interface and 
Merkel’s equation (with its inherent assumption that 
the Lewis number is unity) is assumed to apply. 

For the purposes of analysis the equilibrium line 
(i.e. the relation between water temperature and the 
enthalpy of air in equilibrium with water at that tem- 
perature) is assumed linear, the curvature of this line 
not being expected to have any special pronounced 
effects on spray tower performance. The results of the 
analysis are presented in terms of NTU (number of 
transfer units) and if one evaluates the NTU in the 
usual way but without assuming a linear equilibrium 
line, and identifies that NTU with the NTU of the 
present study, little error should ensue. 
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Due to water mass continuity considerations, it is 
clear that a condition of zero droplet velocity at the 
top of the tower (z = 0) is, in fact, impossible if a 
non-zero water mass flux nzL is to be maintained. What 
is in fact assumed is that the droplet velocity at z = 0 
is sufficiently small so as not to have appreciable effect 

on the residence time of the droplet in the tower, 
while at the same time sufficiently large that the void 
fraction is still very close to unity, even at z = 0 in line 
with the earlier assumption relating to void fraction. 

Due to the large ratio of the densities of water and 
air, there is in fact a wide range of droplet velocities 
where both of these conditions are satisfactorily met. 

Because the void fraction is essentially unity the effect 

of interaction between adjacent droplets (of the sort 
discussed by Yaron and Gal-or [S]) on drop and heat 
and mass transfer can be ignored and each droplet 
can be considered to be in an infinite fluid for the 

purposes of evaluation of their coefficients. The effect 

of drop acceleration of these coefficients is also ignored, 
so that steady correlations are applicable. 

The spectrum of droplet sizes in practical sprays will 

include a range of small droplets whose terminal 
velocities are less than the air velocity and hence travel 

upward and are removed by the drift eliminators. 
[To ensure that these droplets do not comprise a 
significant fraction of the total liquid volume flow. it 
is necessary to use a spray producing a rather large 

(of the order of 1 mmdia) median drop size.] For the 
purposes of the analysis model these small droplets 
are assumed to comprise a negligible part of the total 

liquid flow rate and are therefore ignored. 

ANALYSIS 

Hydrodynamic 
Prior to a thermal analysis, a hydrodynamic analysis 

is required to establish the local velocity of any drop 
size, V(x, z), the local number size distribution 
(normalized), &(x1 z), and local total number density 
of drops N(z) at any point in the tower. 

The values of V(x, z), &(x, z) and N(z) at z = 0 are 
denoted by V,, ho(x) and N, respectively. f”,(x) is 
assumed to be a known function; V, will later be taken 
as zero. A mass balance on droplets entering at z = 0 
gives : 

mL = N, V, 
s 

Irn QL. 7CX3 
___ ._L(x) dx. (1) 

0 6 

Equation (1) establishes the value of N, in terms of 
known quantities. Referring to Fig. 1, conservation of 
the mass of droplets having diameter between x and 
x + iix, flowing into and out of control volume of height 
?z and unit cross-section gives: 

.f”(X. z) N(z). V(x, z) = C(x) 

where C(x) is a constant with respect to z. To evaluate 
C(x) we apply the boundary conditions: at z = 0, 
V(x.z) = K,, fn(x.z) = ,jA,,(x) and N(z) = N,. Using 
equation (1) to evaluate N,] there results: 

f-Jx, =). N(z) = b _!!?L fi?! 
7t QL.X~ v(X, Z) 

(2) 

Determination of the function V(.x, z) requires knowl- 
edge of the drag law on the droplet, and that law used 

in this study is due to Hughes and Gilliland [6]. 
Details of these laws are given in Appendix A; suffice 
to say that the drag coefficient for a droplet in the 
Reynolds number range of interest can be expressed 

as a function of the Reynolds number and the Weber 
number: 

CD = C,(Re, We). 

A force balance on a droplet gives: 

(3) 

?V 1 = 
?z v [ 

$@&n(~.!?!$)]. (4) 

Solution of this differential equation, with the appro- 

priate boundary condition: V(x, o) = 0 gives the re- 
quired velocity distribution V(x, z), and, through 
equation (2). the droplet concentrationf,(x, z) . N(z). 

Thermal analysis 
Consider a volume element of depth az and unit 

cross-sectional area. The surface area of droplets with 
diameter between x and x+3x and contained in this 

volume element is: 

(7’~ = rrx2f,(x, z)N(z)?x (72. (5) 

Assuming Merkel’s approximation, the total heat 
transferred (sensible plus latent) from these droplets is: 

Fq = 7 hc(x’ ‘) [H&(x, z))- H,(z)] 8’~. (6) 

An energy balance on the droplets entering and leaving 
this volume element, yields: 

71x3 
CL. pL. - .j;(x, z) N(z). V(x, z) 

6 1 
(2(x, z) d2q 

.---=z. (7) 
(72 

An energy balance on the air stream entering and 
leaving the volume element yields : 

dH&) s X” pq 
-----= _ 

mG dz 
__ ax. 

* 2x32 
(8) 
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Combining equations (5)-(g) and, in addition, equation 
(2) yields the following pair of coupled integro- 
differential equations: 

atcx, 4 
aZ 
dH,(z) C,rn, X” dt(x, Z) __=_ 

dz s 
,zfv,o(x) ax (10) 

mG o 

and this pair together with the equilibrium relation, 
H, = H,(t) fully describe the thermal behaviour of the 
model tower. As has already been mentioned, the 
present analysis assumes that the equilibrium line is 
linear so that: 

dH&) b 

dt 
(11) 

where “b” is a constant. Introduction of equation (11) 
into equation pair (9), (10) yields 

af&(x, 4 6&(x> z)(W, 4 -H,(z)) 
___= _ 

f3Z PLCLGGX~(X, Z) 
(12) 

dH,(z) mLCL X” aH,(x, z) --=_ 
s dz m,b o & 

.sv,.(x) ax (13) 

where H,(x, z) = H&(x, 2)). 
An appropriate set of boundary conditions for these 

equations may be obtained by specifying the inlet air 
and water states, i.e. H,(x, o) = H, = H,(t,) and 
H,,(Z) = H,,, where Z is the tower height. An equally 
acceptable, but more workable set is obtained by 
specifying both the air and water states at the top of 
the tower: 

HAx, 0) = f&o; H,(O) = H,,. (14) 

This set permits a finite difference procedure for solving 
the equations to proceed down from the top of the 
tower. The resultant air enthalpy at any height z 
corresponds to a solution for a tower of that height 
and with that inlet air enthalpy. (When the equations 
are de-dimensionalized, this particular solution is found 
to correspond to a range of actual conditions. In this 
manner the full range of tower heights is solved for 
by one “march’ down the tower.) 

Equation (13), with boundary conditions (14) can be 
integrated directly with respect to z to give: 

mL CL 
Ha(z) = Km _a f&(x, z).L&) ax (15) 

G 1 

This expression for H,(z) may be substituted into 
equation (12) so as to reduce equation pair (12) and 
(13) to one integrodifferential equation for Hs(x, z). 
The full equation will not be written here for brevity 
but rather written in dimensionless form in a later 
section. 

In order to solve equation pair (12) and (15) it is 
clearly necessary to evaluate the convective coefficient 
h,(x, z), and to specify the feed droplet size distribution 
function J,“(x). For the former, the correlation due to 
Ranz and Marshall [7], with a minor modification to 
correct for droplet distortion, has been used; the details 
are given in Appendix B. Accordingly, the Nusselt 
number for forced convection over a droplet will be 
expressed as a function (assumed known) of the 
Reynolds number and Weber number: 

Nu = Nu(Re, We). (16) 

From the several droplet size distribution functions 
which have been put forward, the special upper limit 
function due to Mugele and Evans [8] has been chosen 
for the present study since it has been demonstrated 
by these authors as being superior in many respects, 
and since it has been found to fit accurately spray data 
for nozzles used for cooling towers. The distribution 
is given by: 

h,v(x) = xu6 
x(x”-)J~ exp[-(dln$)] (17) 

where x, is the maximum droplet size found in the 
spray and y and 6 are dimensionless constants. 

Once H,(x, z) has been determined by solving 
equations (12) and (15) the number of transfer units 
of the tower of any height z can be evaluated. For 
the purposes of a spray tower, the NTU will be 
defined by: 

s H.. 
NTU(Z) = 

dH&) 

H.(Z) $(Z,- Ha(z) 
(18) 

where as(z) is the bulk mean “equilibrium air enthalpy” 
of the droplets at height z : 

s 

x. 
17,(z) = .L,v(Ws(x, 4 dx. (19) 

0 

By combining with equation (15), equation (18) can be 
integrated directly to obtain the required expression 
for NTU: 

NTU(Z) = A In 
1)17,(Z) 

1. (20) 

DIMENSIONLESS GOVERNING EQUATIONS 

The equation obtained by eliminating H,(z) between 
(12) and (15), together with equation (4), the appro- 
priate boundary conditions and the subsidiary equa- 
tions for Ca, Nu and fO., constitute the governing 
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equations for the tower. Written in dimensionless form 
they reduce to : 

operation sz P(<)[ ] d< on equation (21) assuming 
(I(<, II) = g(q) on the r.h.s., there results: 

with boundary conditions: 

O(& 0) = 0; U(& 0) = us. (23) 

F(4) is the dimensionless volumetric droplet size dis- 
tribution given by: 

m5) = c’([“-&hz 
“’ exp[ -(hln&)21 (24) 

Equation (20) for the NTU(z) written in terms of 
dimensionless quantities is: 

NTU(H) = &In/l +(R- l)f7(H)) (25) 

where : 

s 

5. 
g(H) = fl(C HP(l) d& (26) 

0 

Inspection of equations (25)-(26) demonstrates that 
NTU is a function of eight variables, H, R, &,, y. 6, v, 
/I and KY. 

SOLUTION OF GOVERNING EQUATIONS 

Equation (21) differs in two important ways from 
that arising in conventional counter flow tower analy- 

sis. First the square-bracketed part on the r.h.s. is not 
simply expressible in terms of 0(<, q) and hence the 

differential equation is not immediately separable, as is 
the case in conventional towers. Secondly, the curved- 
bracketed part of the r.h.s. is not constant with respect 
to 4, as is usually assumed to be the case, but, through 
its dependence on r/(5, q), varies dramatically down 
the tower. In the solution of the equations which follows 
the effect of these two differences will be separated out: 
a simplified solution will first be arrived at in which 
the non-separable character of equation (21) will be 
essentially ignored, so that the contribution of the 
“non-constant curved bracket” part of the equation 
can be examined separately in detail. Then the solution 
to the full equations will be discussed, and the results 
presented as a correction factor on the simplified 
solution. 

Simplijied solution 
Suppose it is assumed that due to some hypo- 

thetical mixing between droplets, all droplets at any 
given height have the same temperature so that 
H(<, ‘I) = g(q) for all 17. Then if one performs the 

<” 

ml) 
Nu F(t) 

Pr/ 
-B 

<(U-u0 
d[.[l+(R-l)a 

which is immediately separable and integrates to give: 

NTU,(H) 

(The subscript “0” on NTU, indicates that it results 
from the simplified solution.) By introducing ~(5, q), 
the local dimensionless residence time of the droplet 
in the tower, given by: 

(28) 

equation (27) can be written as: 

NTUJH) 

= PR jO’y[ j~“rNu(U.~)dr]d<. (29) 

t(<, n) and U([, q) must be determined from equation 

(22). 
The full simplified solution will contain two addi- 

tional simplifying assumptions. The Nusselt number is 
not a strong function of r) so that the first of these 
additional assumptions is to assume it constant with 
respect to rl for the purposes of the inner integration 
and to evaluate it at an average relative velocity of 
the droplet in the tower, given dimensionally by 

I?. = Z/T + V, and dimensionlessly by: 

fkH)= (A++ (30) 

so that the resultant average Nusselt number Nu is 
given by: 

NAu((, H) = Nu ci, $ 
( > 

With this simplification, the only information required 
from equation (22) is the residence time, ~(5, H). 
Equation (29) now becomes: 

NTUJH) = j?R 

which may be written: 

. (33) 
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HE8 Zg 
z=- 
J-f, rf V 

FIG. 2. Chart for estimating residence time of droplet in tower. 

The second additional simplification is now made: 
it has been found that over the range of variables of 
practical interest, the product fiu(H, 5). r(H, 5) is rela- 
tively insensitive to 5, the first part increasing, the 
second decreasing with 5, and the product remaining 
relatively constant, typically to within 10 per cent over 
a five-fold range in 5. The product will therefore be 
evaluated at the volume-diameter mean diameter, <ai 
so that we now have: 

This is the simplified solution to be used for comparison 
with the full solution. 

The volume-~diameter mean diameter t3i (or ~3,) 
can be determined analytically for the upper limit 
droplet size distribution: 

5s1 = ~.[l+2~exp(4$)+~zexp(~)]~1 (35) 

Written dimensionally equation (34) is: 

Z). (36) 

The corresponding height of a transfer unit, HTUo = 

ZJNTU is given by: 

._-. P(Xji,Z) (37) 

where p(x,,, Z) is the average absolute velocity of the 
x3i droplet in the tower. In a packed tower, HTU is 
conventionally assumed to be independent of the tower 

height Z. In a spray tower this is clearly not the case 
since psi varies dramatically with Z, particularly if as 
in the case of the present tower, the droplets start with 
zero absolute velocity. 

In order to facilitate the evaluation of the residence 
time, Fig. 2 has been prepared. It gives the ratio of 
the absolute average velocity, P, to the average terminal 
velocity V, as a function of Z, g, V, and V,,. The plot 
is approximate since it is based upon integration of 
equation (22) but using a constant value of C,,-that 
value for CD which the droplet experiences at the 
relative terminal velocity. Since typically the drag on 
the droplet is considerably less than the gravitational 
force until the droplet is close to its terminal velocity, 
this technique is quite accurate and Fig. 2 has been 
found to he acceptable for engineering calculations. 
Further details of the plot are given in Appendix C. 
Figure 2 must be used in conjunction with a relation 
for the relative terminal velocity of a droplet as a 
function of the droplet size. This is obtained by setting 
the r.h.s. of equation (22) equal to zero, i.e. by setting 

(38) 

and solving for U by trial and error. Figure 3 shows 
the result for k = 1.250 x 10m4, its value at 20°C. 
Alternatively one can use dimensional relations used 
by meteorologists for raindrops, in particular one given 
by Foote and DuToit [9] which is said to be accurate 
to within +0,03m/s for drop diameters from 0.1 to 
5.8mm. These two methods have been found by the 
author to agree within k2.5 per cent. Foote and 
DuToit also gives a correction (small) for temperatures 
different from 20°C. 
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FIG. 3. Chart for determining terminal Reynolds Figure 4 shows the results of the numerical solution 
number of droplet. for one (typical) set of the dimensionless variables in 

T. HOLLANDS 

equations were then solved using a Runga-Kutta 

method, starting from the top of the tower and march- 
ing down. A Gauss-Siedel quadrature procedure [IO] 
was used for the evaluation of the integral in equation 

(21). Because of the accuracy of this integration pro- 
cedure it was found possible to obtain sufficient accu- 
racy in the NTU by using six discrete regions for the 
droplet spectrum. The computer program was sub- 

jected to a number of internal checks for accuracy 
and consistency by comparing the results to that 
predicted with analytical procedures in the special 

cases where analytical results are possible. For example, 

for certain CD relations (e.g. CD = A+ B/Re where A 

and B are constants) equation (22) can be integrated 
analytically; the results compared favourably to that 
resulting from numerical integration using the same 
drag law. The fact that if the Nusselt number is assumed 
constant, CD is assumed zero, and R is very large, 
then equation (34) is exact permitted another check on 
the numerical integration. 

2.c 

26- 

2.4- 

v = 3.0 -I20 3 
p = 16.0 

- 100 
R=IO 
Y = 2.0 780 

S = I.25 - 60 

cm= I00 -40 
I =lO‘4 20 

I00 200 3GO 400 500 600 700 000 

Dimensionless height , H 

FIG. 4. Calculated NTU and the dimensionless HTU (= H/NTU) as a 
function of the tower height for one set of conditions. 

Complete solution terms of the NTU and HTU. Because of the range 
The full set of governing equations ((21)-(24), (3) and of NTU covered in a graph such as Fig. 4 it is useful 

(16)) have been solved numerically on a digital com- to present the results of the numerical solution of the 
puter. The droplet size spectrum was approximated full equations in terms of a correction factor on the 
as a set of discrete regions, each having uniform NTU resulting from the simplified solution: 
diameter, and equations (21) and (22) written on each 
region. The resultant simultaneous ordinary differential NTU = F,NTU, (39) 
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where NTU, is given by equation (34). Figures 5-9 
show plots of Fr against NTU. They show the effect 
of varying each of the other parameters (except K and /?) 
over the practical range of interest, while maintaining 
the rest (except n) constant at central values. The effect 
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0.5 I l I I I I I I L I 1 I I 
0 0.4 00 I.2 I.6 20 24 2.8 

NW 

FIG. 5. Plot showing the effect of R on Fr 
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FIG. 6. Plot showing the effect of 6 on FT. 
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FIG. 7. Plot showing the effect of y on FT. 
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FIG. 8. Plot showing the effect of u on FT. 
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FIG. 9. Plot showing the effect of 5, on FT. 

on FT of variation of K and jl over the range of practical 
interest (05 x 10m4 < K < 1.5 x 10m4; 5 < b < 30) was 
found to be insignificant. (The parameter &,, is used 
in these figures rather than 5, to indicate the droplet 
size scale. &,, is the dimensionless volume-median 
diameter and is equal to t./( 1 + y).) 

It will be noted that F, is everywhere less than unity. 
This is because the simplified solution permits the 
“coefficient” (curve bracketed part of equation (21)) to 
vary with droplet size but not the “driving force”; 
(square bracketed part). In fact the smaller droplets, 
having a high surface to volume ratio and long 
residence times, suffer a greater temperature change in 
passing through the tower than the larger, for which 
the reverse is the case. Consequently the “driving force” 
for the smaller droplets is actually less than the average 
driving force, and that of the larger, greater than 
average. Since the predominate heat transfer in the 
simplified solution takes place from the smaller drop 
lets, this solution overestimates the total heat transfer, 
and consequently represents an upper bound for the 
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FIG. 10. Temperature distribution with respect to droplet 
size at various distances down the tower. 

NTU. Figure 10 shows how the droplet temperature 

varies with height and droplet size for a given set of 
conditions. Another interesting feature of Figs. 5-9 is 
the fact that ,FT appears to approach unity as NTU 
approaches zero. The reason for this can be seen from 

inspecting equation (21), for if NTU is small, O(& q) 
is small and hence 0 can be neglected in the square 
bracketed part of this equation, making the two sol- 
utions essentially identical. 

Inspection of Figs. 5-9 shows that FT for a given 
NTU is relatively insensitive to u, y and 5, but strongly 
dependent on 6 and R. This is to be expected in view 

of the above explanation since 6 is a measure of the 
standard deviation of the droplet size distribution and 
R is the ratio of the slopes of the operating and 
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Frc. 11. Plot showing the inter-effect of R and 6 on FT. 

equilibrium lines. If R is less than unity. the mean 
driving force decreases as one proceeds down the tower 
and therefore the effect of the driving force being 
different for different droplet sizes is more pronounced. 
For R greater the unity the reverse is the case. Figure 1 I 
examines more closely the inter-effect of R and d on 
FT. Clearly very substantial errors can be introduced 

by assuming all droplets to be of the same size. 

EXPERIMENTAL STUDY 

Experimental studies on spray cooling towers re- 

ported in the literature either depart from the type of 
tower treated here or do not report all relevant vari- 

ables so that, unfortunately, direct comparison with 
the present theory is impossible. Testing the theory 
using experimental towers in the laboratory is troubled 
by the fact that, due to the necessarily restricted 
working cross-sectional area, uniform motion over a 
practical height is difficult to achieve and it is therefore 
difficult to avoid the migration to the wall of a good 
fraction of the droplets. For this reason testing of full- 

scale towers in the field is to be preferred although 
such tests are likely to lack the desired control of all 

variables. 
A test has been carried out by the author on an 

on-line industrial tower and the results of this test will 
now be reported. The tower was of the type sketched 
in Fig. l(b). so that the water droplets rose several 
feet from the spray before turning and falling down 

the tower. In applying the present theory in predicting 
the performance of the tower the heat transfer occurring 
while the droplets are rising will be neglected. This 
neglect will be compensated for to some extent by the 
fact that, although the tower had a relatively. large 
working cross-section (20.4m’) some droplets un- 
doubtedly struck and flowed down the walls where 
they receive very little additional cooling. 

The tower parameters were: Z = IO.5 m; mL = 55.5 

kg/s; m, = 71,Okgjs; V, = 2,9m/s; 7 = 2.21; (5 = 1.13, 
x, = 2.74mm. The last three variables were obtained 
from the spray nozzle manufacturer’s data on the 
droplet size distribution for the nozzle used (Spraying 
Systems Ltd. nozzle No. lt C25 at 10 lb/in’). An energy 
balance on measurements of inlet and outlet water 
temperature and air enthalpies gave an unaccounted 
energy rate of less than 3 per cent of the total duty 
of the tower. The measured NTL' was 0.635 (average 
of two independent tests which gave values of 0.626 
and 0643 respectively). The separation between the 
equilibrium and operating lines was large in this case 
so that equation (20) was applicable. Hence the 
measured NTU was determined from this equation 
using measured values of H,,,, H,,?, n&Z) and H,(Z). The 
water cooling range was from approximately 35 to 25C. 
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The dimensionless parameters for this tower are: 

R = 0.556; p = 11.7; H = 351; u = 5.4; y = 2.21; 6 = 

1.13, 4, = 96.9. According to the present analysis the 
predicted NTU for these parameters is 0.684, which 

is within 7.5 per cent of the measured value. The 
corresponding value for FT = 0.69. In view of the 
neglect of the “rise region” and of the droplet deposition 
on the walls and in view of the uncertainties in the 
values of x,, y and 6, this agreement should not be 
considered a verification of the theory. However, it 
does constitute an indication that the theory is at least 
capable of estimating the performance of real towers. 

CONCLUSIONS 

1. It is clear that at least two assumptions made in 

the conventional analysis of cooling towers are not 
applicable to spray cooling towers-namely uniformity 
of liquid temperature at a given height, and invariance 

of the surface area per unit volume, and surface 
coefficients with respect to distance down the tower. 
(Whether these assumptions apply to a more conven- 
tional packed tower is difficult to say at the present 

time due to lack of measurements on droplet size 
distribution in these towers.) The deviations from the 
conventional analysis are so large that it appears un- 
wise to couch experimental results in terms of the 

HTU or overall enthalpy volumetric coefficients. 
2. The analysis presented here should be sufficiently 

accurate for the design of spray towers of the type 
sketched in Fig. 1. However, it should be noted that 
in practice considerable care is required in the layout 

of the nozzles to ensure as little as possible of the spray 
migrates to the walls. 

3. Due to the predicted decrease in performance 
resulting from a wide droplet-size distribution, an 
atomizer producing as uniform a droplet size as 
possible should be used. 

4. It is clear from equation (36) that as small a mean 
droplet size as possible is desirable for high perform- 
ance. However, in practice, as was pointed out in the 
Introduction, as the mean diameter is decreased, the 
fraction of small droplets whose relative terminal vel- 

ocity is less than the air velocity and hence which travel 
upward and are removed by the eliminators, becomes 
larger as the mean droplet size is reduced. Thus, dealing 
with the typical droplet size distributions produced by 
available nozzles suitable for cooling towers, and 
allowing say 1 per cent of the total water flow to be 
carried up to the eliminators, sprays with mean droplet 
size of the order of 1-2 mm must be used. An atomizer 
producing a spray of uniform droplets would not en- 
counter the problem and hence a smaller mean drop 
diameter could be used. This again augers well for 
using an atomizer producing uniform droplet size. 
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APPENDIX A 

Evaluation of C,(Re, We) 

Water droplets of the order of size of interest in this 
study (- 1 mm) distort from the spherical shape near their 
terminal velocities and Hughes and Gilliland [6] fitted a 
wide range of experimental data covering a range of liquids 
by use of a method based on assuming that the distorted 
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shape is an oblate spheroid. The slenderness ratio i of the 
spheroid was shown to be expressible as a function of the 
group Re0’35. We: 

i, = I(Re0’35. We) (A-1) 

and they tabulate this function. The details of the actual 
determination for a given We and Re may be found in the 
reference: suffice it to say that for the drag on spheres, the 
expression due to Marshall [ 111: 

Cb = 0~22+;~(l+O~15Re”~6) (A-2) 

was used in the present study and for the drag on a disk 
the expression 

C,D = 1.12 +(20jRe)+0.66/( 1 + 175(log,,(Re/280))2) (A-3) 

was used and that a C, based upon a weighted average 
of these two, due to Riabouchinsky [12] gave the drag 
coefficient on the droplet. This drag law has been found 
to be consistent with data obtained by meterologists, as 
summarized by Foote and DuToit [9] for the terminal 
velocity of raindrops. 

APPENDIX B 

Evaluation of Nu(Re, We) 

The Reynolds number range of interest for droplets 
falling from rest to their terminal velocity is approximately 
300-2000. Experiments measuring convective coefficients 
over spheres governing this range have been extensively 
reviewed by Rowe et al. [13]. Due to its simplicity, and due 
to its correctness in the limit, Re -0, the correlation 
equation 

NM = 2 -t BPr”3Re”2 (B-1) 

is preferred although it is now realized that the exponents 
on both the Reynolds number and the Prandtl number 
both depend on “Re” and “Pr”. For studies using air as the 
fluid (in both heat and mass transfer) values of “B” of 0552, 
0,555,0,547, @600 and 0.690 have been obtained, as reported 
in references [14-17 and 131 respectively. The value of 0.6 
due to Ranz and Marshall [7] was chosen for the present 
study. As has been mentioned, large droplets experience 
some distortion from the spherical shape. Effect of this on 
the heat transfer has been investigated by assuming, follow- 
ing Hughes and Gilliland [6], that the droplet is an oblate 
spheroid. The mean convective coefficient over an oblate 
spheroid has been investigated by Skelland and Cornish 
[17] who found that their data could be fitted to that of 
a sphere provided one used an equivalent diameter for the 
oblate spheroid equal to its total surface area divided by 
its perimeter normal to the flow, denoted by x1. The value 

of x1 can be shown by geometric arguments to be given by: 

where 1 is the slenderness ratio obtained from equation (A- 1). 
The Nusselt number for the droplet can then be shown to 
be given by: 

2+0,6 Pr1’3Re”2 2 
l/2 

0 I 
(B-3) 

x 

(A value of 0.72 was used for the Prandtl number.) 
Equations (A-l), (B-2) and (B-3) were used for determining 

the Nusselt number. In fact, the corrections to the Nusselt 
number associated with the drop’s non-spherical shape 
outlined above was found to be quite small (less than 
5 per cent). 

APPENDIX C 

Residence Time for Constant CD 

From equation (38) the value of C, at the terminal 
velocity is: 

c 3 
D 3u, 

(C-1) 

Substitution of this value for C, into equation (22) gives: 

(C-2) 

and integration of the differential equation from q = o 
(where Li = ~5) to q = x gives: 

pn * -=I xdx 

u, 
(C-3) 

0 

where: 

(C-4) 

Substituting equation (28) for 1 into equation (C-2) and 
integrating gives: 

* 

5(Uc - vSb(H, 5) ! 
‘i dx 

u: = 
(C-5) 

0 

Equations (C-3) and (C-5) represent an implicit relation 
between H and t, relating them through the parameter $. 
This relation is graphed in Fig. 2. 

ANALYSE D’UNE TOUR DE REFROIDISSEMENT A CONTRE-COURANT 

R&urn&-La tour de refroidissement (ttudiCe est sans garnissage. Elle est verticale, le courant d’air 
s’blevant uniformkment tandis que le courant d’eau dispersC en gouttelettes descend uniformtment. Les 
gouttes sont introduites au sommet de la tour & vitesse nulle, B temptrature uniforme, la distribution 
en taille &ant connue. On tient compte du fait que les gouttes g une mZme hauteur n’ont pas la m&me 
tempkrature. Les rbultats sent pr&sent&s sous la forme d’un facteur de correction qui affecte la solution 
simple obtenue en nbgligeant ce fait. On examine l’effet du facteur de correction de tous les groupes 

adimensionnels caracttristiques. 
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DIE UNTERSUCHUNG EINES TROPFEN-KUHLTURMES IN 
GEGENSTROMAUSFUHRUNG 

Zusammenfassung-Der hier untersuchte Kiihlturm hatte keine Einbauten. Der Kiihlturm arbeitet mit 
senkrechter Stromfthrung, und zwar mit gleichmlI3ig verteilter, aufwtits striimender Luft sowie einem 
gleichmlgig verteilten, abwiirts gerichteten Wasserstrom, der in Tropfen zerstaubt ist. Die Tropfen haben 
am Ktihlturmeintritt die Anfangsgeschwindigkeit Null, gleiche Temperatur und ein bekanntes Tropfen- 
spektrum. Die Untersuchung berticksichtigt, daO bei den verschiedenen Fallhohen die Tropfen nicht die 
gleiche Temperatur besitzen. Die Ergebnisse werden mit einer vereinfachten Gleichung dargestellt, die 
den Temperaturunterschied vernachlassigt und daher mit einem Korrekturfaktor erweitert ist. Die 
Auswirkungen aller in Frage kommenden dimensionslosen KenngrijDen aufden Wert des Korrekturfaktors 

werden iiberpriift. 

AHAJIkl3 I-IPOTWBOTOYHO~ 6PbI3FAJIbHOH IPAJHJPHM 

hIOTWH~-AHaJUi3LipyeTCx nOJIaR BepTlcKanbHaSl rpaAHpH%l C lTOTOKOM BO3n)'Xa, paBHOMC,,HO 

JJB&DK)'II$LiMUl BBepX, W nOTOKOM BOAbl B BHnC KaneJIb, PaBHOMCPHO ABH~j'~CrOCSI BHHJ. Karma 
nocrynaror B BCpXHWIO YaCTb rpaAwpHu c Hj’JleBOfi CKOpOCTbK$ OAH~POL~HO~~ reMneparypoB H 
W3BecTkibm pacnpeneneHweM no pa3MepaM. Ilpe aHam3e npwHui+iaeTcn BO BwMame, '~TO Terme- 

~~TypaK~~~Hapa3HbIXBblCOTaXHCO~.HHaKOBa.~e3~~bTaTbI IlpCACTaBJleHbl BBAAenOnpaBO'IHOrO 
KOS@$UUBCHTa K YnpOuleHHOMy pClUeHHto, B KOTOpOM He )'WiTbIBaeTCSl 3TOT +aKT. kiCCJIe~yCTCR 


